

2015 Church Ave San Martin, CA 95046 (415) 780-9907 info@adireaudio.com

Operation Name	Date	Time
Xmax by 10% THD = 19.2mm	12/03/18	11:43:07
Xmax by IEC-62458 = 4.5mm	12/03/18	11:43:07
LPM auto	12/03/18	10:50:11
LSI auto	12/03/18	11:14:59
DIS auto DC Component	12/03/18	11:23:37
DIS auto Xmax (display state %)	12/03/18	11:17:31
DIS auto Xmax (display state mm)	12/03/18	11:17:26

Linear Parameter Measurement (LPM)

Linear Parameters Result Table (abridged)					
Name	Value	Unit	Comment		
Electrical Pa	rameters				
Re	6.60	Ohm	electrical voice coil resistance at DC		
Le	5.034	mH	frequency independent part of voice coil inductance		
fs	18.9	Hz	driver resonance frequency		
 Mechanical I	Parameters				
Mms	234.602	g	mechanical mass of diaphragm assembly with air load & voice coil		
Mmd (Sd)	207.851	g	mechanical mass of voice coil and diaphragm without air load		
Rms	2.139	kg/s	mechanical resistance of total-driver losses		
Cms	0.304	mm/N	mechanical compliance of driver suspension		
Kms	3.29	N/mm	mechanical stiffness of driver suspension		
BI	19.689	N/A	force factor (BI product)		
Loss factors					
Qms	12.995		mechanical Q-factor of driver in free air considering Rms only		
Qes	0.473		electrical Q-factor of driver in free air considering Re only		
Qts	0.456		total Q-factor considering Re and Rms only		
Other Param	neters				
Vas	292.0702	ŀ	equivalent air volume of suspension		
n0	0.398	%	reference efficiency (2 pi-radiation using Re)		
Lm	88.20	dB	characteristic sound pressure level (SPL at 1m for 1W @ Re)		
Lnom	89.04	dB	nominal sensitivity (SPL at 1m for 1W @ Zn)		
rmse Z	4.83	%	root-mean-square fitting error of driver impedance Z(f)		
rmse Hx	1.29	%	root-mean-square fitting error of transfer function Hx (f)		
Sd	824.48	cm²	diaphragm area		

Magnitude of electric impedance Z(f)

Magnitude of transfer function Hx(f) = X(f)/U(f)

Spectrum I(f) of current at speaker terminals

Xmax Measurements

Value	Method	Measured
	(by IEC-62458)	4.5mm
X10	(by 10% THD)	19.2mm
XVAR	(by 50% BL or C)	>17.2mm

There are many methods to calculate the linear excursion range of a driver (commonly called Xmax). Some methods are more suitable to some applications, so multiple methods are offered here.

Standard IEC-62458 is an acoustic-based measurement where displacement is determined by both total harmonic distortion and intermodulation distortion. This test is better suited for wide-bandwitdh drivers, not bass drivers. This test is based on Klippel's Application Note 4 available at: http://www.klippel.de/know-how/literature/application-notes.html

X10 is the measurement listed above as "10% THD". X10 shows an excursion limit is when the driver reaches 10% total harmonic distortion, as measured with a microphone, while playing a sine wave at resonant frequency (fs). This test is more suitable for bass drivers that play low frequencies.

Xvar is the displacement when either motor strength BL or compliance C decay by 50%. The value for Xvar can be found in the LSI Nonlinear Parameters Result Table below; it is the lesser of the first two listed values (BL@min=50% and also C@min=50%). Xvar is sometimes reported as ">x.x" (greater than some displacement) when displacement was limited by a high voice coil temperature.

Large Signal Identification (LSI)

LSI Setup Parameter Table (abridged)						
Name	Value	Unit	Comment			
Protection (Prop	Protection (Property Page)					
Delta Tlim	100	K	increase of voice coil temp (limit)			
Bllim	30.0	%	minimal force factor ratio (limit)			
Clim	30.0	%	minimal compliance ratio (limit)			
Plim	200.000	W	electrical input power (limit)			
Gsmall	-10.0	dB	small-signal gain			

Name	Value	Unit	Comment
Displacement Limits			
X BI @ BI min=50%	>17.2	mm	limit due to force factor variation (used to calculate XVAR)
X C @ C min=50%	>17.2	mm	limit due to compliance variation (used to calculate XVAR)
X L @ Z max=10 %	3.1	mm	limit due to inductance variation
X d @ d2=10%	61.7	mm	limit due to IM distortion (Doppler)
Asymmetry (IEC 6245	8)		
Ak	63.83	%	Stiffness asymmetry Ak(Xpeak)
Xsym	2.73	mm	Symmetry point of $BI(x)$ at maximal excursion
Xpse	19.2	mm	-Xpse < X < Xpse, range where power series is fitted

State Result Table (abridged)				
Name	Value	Unit	Comment	
t		h:min:s	measurement time	
Glarge (Gmax)	21.2 (26.0)	dB	excitation amplitude gain in large signal domain (max)	
Xprot	19.2	mm	max voice coil excursion allowed by protection system	

Voice coil displacement

Increase of voice coil temperature Delta Tv (t) and electrical input power P (t)

Voltage Urms, Upeak (t) and current Irms, Ipeak (t)

DC Component (DIS)

DIS Table Signal Characteristics (abridged) - (these are the limits of the test)			
Name	Value	Unit	Comment
Delta Tv lim	50.000	K	allowed increase of voice coil temperature
dht 1 lim	10.000	percent	allowed total harmonic distortion in signal Y1

Xmax measurement graphs

